
NAG Fortran Library Routine Document

D02RAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02RAF solves the two-point boundary-value problem with general boundary conditions for a system of
ordinary differential equations, using a deferred correction technique and Newton iteration.

2 Specification

SUBROUTINE D02RAF (N, MNP, NP, NUMBEG, NUMMIX, TOL, INIT, X, Y, IY, ABT,
1 FCN, G, IJAC, JACOBF, JACOBG, DELEPS, JACEPS, JACGEP,
2 WORK, LWORK, IWORK, LIWORK, IFAIL)

INTEGER N, MNP, NP, NUMBEG, NUMMIX, INIT, IY, IJAC, LWORK,
1 IWORK(LIWORK), LIWORK, IFAIL
double precision TOL, X(MNP), Y(IY,MNP), ABT(N), DELEPS, WORK(LWORK)
EXTERNAL FCN, G, JACOBF, JACOBG, JACEPS, JACGEP

3 Description

D02RAF solves a two-point boundary-value problem for a system of n ordinary differential equations in
the interval a; bð Þ with b > a. The system is written in the form

y0i ¼ f i x; y1; y2; . . . ; ynð Þ, i ¼ 1; 2; . . . ; n ð1Þ
and the derivatives f i are evaluated by a (sub)program FCN supplied by you. With the differential
equations (1) must be given a system of n (nonlinear) boundary conditions

gi y að Þ; y bð Þð Þ ¼ 0, i ¼ 1; 2; . . . ; n,

where

y xð Þ ¼ y1 xð Þ; y2 xð Þ; . . . ; yn xð Þ½ �T. ð2Þ
The functions gi are evaluated by a (sub)program G supplied by you. The solution is computed using a
finite-difference technique with deferred correction allied to a Newton iteration to solve the finite-difference
equations. The technique used is described fully in Pereyra (1979).

You must supply an absolute error tolerance and may also supply an initial mesh for the finite-difference
equations and an initial approximate solution (alternatively a default mesh and approximation are used).
The approximate solution is corrected using Newton iteration and deferred correction. Then, additional
points are added to the mesh and the solution is recomputed with the aim of making the error everywhere
less than your tolerance and of approximately equidistributing the error on the final mesh. The solution is
returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If, on
the other hand, the solution is required at several specific points then you should use the interpolation
routines provided in Chapter E01 if these points do not themselves form a convenient mesh.

The Newton iteration requires Jacobian matrices

@f i
@yj

 !
;

@gi
@yj að Þ

 !
and

@gi
@yj bð Þ

 !
.

These may be supplied by you through (sub)programs JACOBF for
@f i
@yj

 !
and JACOBG for the others.

D02 – Ordinary Differential Equations D02RAF

[NP3657/21] D02RAF.1

Alternatively the Jacobians may be calculated by numerical differentiation using the algorithm described in
Curtis et al. (1974).

For problems of the type (1) and (2) for which it is difficult to determine an initial approximation from
which the Newton iteration will converge, a continuation facility is provided. You must set up a family of
problems

y0 ¼ f x; y; �ð Þ, g y að Þ; y bð Þ; �ð Þ ¼ 0, ð3Þ

where f ¼ f 1; f 2; . . . ; f n½ �T etc., and where � is a continuation parameter. The choice � ¼ 0 must give a
problem (3) which is easy to solve and � ¼ 1 must define the problem whose solution is actually required.
The routine solves a sequence of problems with � values

0 ¼ �1 < �2 < � � � < �p ¼ 1. ð4Þ

The number p and the values �i are chosen by the routine so that each problem can be solved using the

solution of its predecessor as a starting approximation. Jacobians
@f

@�
and

@g

@�
are required and they may be

supplied by you via the user-supplied (sub)programs JACEPS and JACGEP respectively or may be
computed by numerical differentiation.

4 References

Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J. Inst.
Maths. Applics. 13 117–119

Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear, ordinary
boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations. Lecture Notes
in Computer Science (ed B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76 Springer–Verlag

5 Parameters

1: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N > 0.

2: MNP – INTEGER Input

On entry: MNP must be set to the maximum permitted number of points in the finite-difference
mesh. If LWORK or LIWORK are too small then internally MNP will be replaced by the
maximum permitted by these values. (A warning message will be output if on entry IFAIL is set to
obtain monitoring information.)

Constraint: MNP � 32.

3: NP – INTEGER Input/Output

On entry: must be set to the number of points to be used in the initial mesh.

Constraint: 4 � NP � MNP.

On exit: the number of points in the final mesh.

4: NUMBEG – INTEGER Input

On entry: the number of left-hand boundary conditions (that is the number involving y að Þ only).

Constraint: 0 � NUMBEG < N.

D02RAF NAG Fortran Library Manual

D02RAF.2 [NP3657/21]

5: NUMMIX – INTEGER Input

On entry: the number of coupled boundary conditions (that is the number involving both y að Þ and
y bð Þ).
Constraint: 0 � NUMMIX � N� NUMBEG.

6: TOL – double precision Input

On entry: a positive absolute error tolerance. If

a ¼ x1 < x2 < � � � < xNP ¼ b

is the final mesh, zj xið Þ is the jth component of the approximate solution at xi, and yj xð Þ is the jth
component of the true solution of (1) and (2), then, except in extreme circumstances, it is expected
that

zj xið Þ � yj xið Þ
�� �� � TOL, i ¼ 1; 2; . . . ;NP; j ¼ 1; 2; . . . ; n. ð5Þ

Constraint: TOL > 0:0.

7: INIT – INTEGER Input

On entry: indicates whether you wish to supply an initial mesh and approximate solution
INIT 6¼ 0ð Þ or whether default values are to be used, INIT ¼ 0ð Þ.

8: XðMNPÞ – double precision array Input/Output

On entry: you must set Xð1Þ ¼ a and XðNPÞ ¼ b. If INIT ¼ 0 on entry a default equispaced mesh
will be used, otherwise you must specify a mesh by setting XðiÞ ¼ xi, for i ¼ 2; 3; . . .NP� 1.

Constraints:

if INIT ¼ 0, Xð1Þ < XðNPÞ;
if INIT 6¼ 0, Xð1Þ < Xð2Þ < � � � < XðNPÞ.

On exit: Xð1Þ;Xð2Þ; . . . ;XðNPÞ define the final mesh (with the returned value of NP) and Xð1Þ ¼ a
and XðNPÞ ¼ b.

9: YðIY,MNPÞ – double precision array Input/Output

On entry: if INIT ¼ 0, then Y need not be set.

If INIT 6¼ 0, then the array Y must contain an initial approximation to the solution such that Yðj; iÞ
contains an approximation to

yj xið Þ, i ¼ 1; 2; . . . ;NP; j ¼ 1; 2; . . . ; n.

On exit: the approximate solution zj xið Þ satisfying (5) on the final mesh, that is

Yðj; iÞ ¼ zj xið Þ, i ¼ 1; 2; . . . ;NP; j ¼ 1; 2; . . . ; n,

where NP is the number of points in the final mesh. If an error has occurred then Y contains the
latest approximation to the solution. The remaining columns of Y are not used.

10: IY – INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which D02RAF is
called.

Constraint: IY � N.

11: ABTðNÞ – double precision array Output

On exit: ABTðiÞ, for i ¼ 1; 2; . . . ; n, holds the largest estimated error (in magnitude) of the ith
component of the solution over all mesh points.

D02 – Ordinary Differential Equations D02RAF

[NP3657/21] D02RAF.3

12: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions f i (i.e., the derivatives y0i) at a general point x for a given value of
�, the continuation parameter (see Section 3).

Its specification is:

SUBROUTINE FCN (X, EPS, Y, F, N)

INTEGER N
double precision X, EPS, Y(N), F(N)

1: X – double precision Input

On entry: the value of the argument x.

2: EPS – double precision Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not being
used.

3: YðNÞ – double precision array Input

On entry: the value of the argument yi, for i ¼ 1; 2; . . . ; n.

4: FðNÞ – double precision array Output

On exit: the values of f i, for i ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: the number of equations.

FCN must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

13: G – SUBROUTINE, supplied by the user. External Procedure

G must evaluate the boundary conditions in equation (3) and place them in the array BC.

Its specification is:

SUBROUTINE G (EPS, YA, YB, BC, N)

INTEGER N
double precision EPS, YA(N), YB(N), BC(N)

1: EPS – double precision Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not being
used.

2: YAðNÞ – double precision array Input

On entry: the value yi að Þ, for i ¼ 1; 2; . . . ; n.

3: YBðNÞ – double precision array Input

On entry: the value yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: BCðNÞ – double precision array Output

On exit: the values gi y að Þ; y bð Þ; �ð Þ, for i ¼ 1; 2; . . . ; n. These must be ordered as follows:

(i) first, the conditions involving only y að Þ (see NUMBEG description above);

D02RAF NAG Fortran Library Manual

D02RAF.4 [NP3657/21]

(ii) next, the NUMMIX coupled conditions involving both y að Þ and y bð Þ (see
NUMMIX); and,

(iii) finally, the conditions involving only y bð Þ (N� NUMBEG� NUMMIX).

5: N – INTEGER Input

On entry: n, the number of equations.

G must be declared as EXTERNAL in the (sub)program from which D02RAF is called. Parameters
denoted as Input must not be changed by this procedure.

14: IJAC – INTEGER Input

On entry: indicates whether or not you are supplying Jacobian evaluation routines.

IJAC 6¼ 0

You must supply (sub)programs JACOBF and JACOBG and also, when continuation is used,
(sub)programs JACEPS and JACGEP.

IJAC ¼ 0

Numerical differentiation is used to calculate the Jacobian and the routines D02GAZ,
D02GAY, D02GAZ and D02GAX respectively may be used as the dummy parameters.

15: JACOBF – SUBROUTINE, supplied by the user. External Procedure

JACOBF must evaluate the Jacobian
@f i
@yj

 !
, for i; j ¼ 1; 2; . . . ; n, given x and yj, for j ¼ 1; 2; . . . ; n.

Its specification is:

SUBROUTINE JACOBF (X, EPS, Y, F, N)

INTEGER N
double precision X, EPS, Y(N), F(N,N)

1: X – double precision Input

On entry: the value of the argument x.

2: EPS – double precision Input

On entry: the value of the continuation parameter �. This is 1 if continuation is not being
used.

3: YðNÞ – double precision array Input

On entry: the value of the argument yi, for i ¼ 1; 2; . . . ; n.

4: FðN,NÞ – double precision array Output

On exit: Fði; jÞ must be set to the value of
@f i
@yj

, evaluated at the point x; yð Þ, for

i; j ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

JACOBF must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

D02 – Ordinary Differential Equations D02RAF

[NP3657/21] D02RAF.5

16: JACOBG – SUBROUTINE, supplied by the user. External Procedure

JACOBG must evaluate the Jacobians
@gi

@yj að Þ

 !
and

@gi
@yj bð Þ

 !
. The ordering of the rows of AJ

and BJ must correspond to the ordering of the boundary conditions described in the specification of
(sub)program G.

Its specification is:

SUBROUTINE JACOBG (EPS, YA, YB, AJ, BJ, N)

INTEGER N
double precision EPS, YA(N), YB(N), AJ(N,N), BJ(N,N)

1: EPS – double precision Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not being
used.

2: YAðNÞ – double precision array Input

On entry: the value yi að Þ, for i ¼ 1; 2; . . . ; n.

3: YBðNÞ – double precision array Input

On entry: the value yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: AJðN,NÞ – double precision array Output

On exit: AJði; jÞ must be set to the value
@gi

@yj að Þ, for i; j ¼ 1; 2; . . . ; n.

5: BJðN,NÞ – double precision array Output

On exit: BJði; jÞ must be set to the value
@gi

@yj bð Þ, for i; j ¼ 1; 2 . . . ; n.

6: N – INTEGER Input

On entry: n, the number of equations.

JACOBG must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

17: DELEPS – double precision Input/Output

On entry: must be given a value which specifies whether continuation is required. If
DELEPS � 0:0 or DELEPS � 1:0 then it is assumed that continuation is not required. If
0:0 < DELEPS < 1:0 then it is assumed that continuation is required unless

DELEPS <
ffi
machine precision

p
when an error exit is taken. DELEPS is used as the increment

�2 � �1 (see (4)) and the choice DELEPS ¼ 0:1 is recommended.

On exit: an overestimate of the increment �p � �p�1 (in fact the value of the increment which would
have been tried if the restriction �p ¼ 1 had not been imposed). If continuation was not requested
then DELEPS ¼ 0:0.

If continuation is not requested then the parameters JACEPS and JACGEP may be replaced by
dummy actual parameters in the call to D02RAF. (D02GAZ and D02GAX respectively may be
used as the dummy parameters.)

18: JACEPS – SUBROUTINE, supplied by the user. External Procedure

JACEPS must evaluate the derivative
@f i
@�

given x and y if continuation is being used.

D02RAF NAG Fortran Library Manual

D02RAF.6 [NP3657/21]

Its specification is:

SUBROUTINE JACEPS (X, EPS, Y, F, N)

INTEGER N
double precision X, EPS, Y(N), F(N)

1: X – double precision Input

On entry: the value of the argument x.

2: EPS – double precision Input

On entry: �, the value of the continuation parameter.

3: YðNÞ – double precision array Input

On entry: the solution values yi at the point x, for i ¼ 1; 2; . . . ; n.

4: FðNÞ – double precision array Output

On exit: FðiÞ must contain the value
@f i
@�

at the point x; yð Þ, for i ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

JACEPS must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

19: JACGEP – SUBROUTINE, supplied by the user. External Procedure

JACGEP must evaluate the derivatives
@gi
@�

if continuation is being used.

Its specification is:

SUBROUTINE JACGEP (EPS, YA, YB, BCEP, N)

INTEGER N
double precision EPS, YA(N), YB(N), BCEP(N)

1: EPS – double precision Input

On entry: �, the value of the continuation parameter.

2: YAðNÞ – double precision array Input

On entry: the value of yi að Þ, for i ¼ 1; 2; . . . ; n.

3: YBðNÞ – double precision array Input

On entry: the value of yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: BCEPðNÞ – double precision array Output

On exit: BCEPðiÞ must contain the value of
@gi
@�

, for i ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

JACGEP must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

D02 – Ordinary Differential Equations D02RAF

[NP3657/21] D02RAF.7

20: WORKðLWORKÞ – double precision array Workspace
21: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which D02RAF
is called.

Constraint: LWORK � MNP� 3N2 þ 6Nþ 2
� �

þ 4N2 þ 3N.

22: IWORKðLIWORKÞ – INTEGER array Workspace
23: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which D02RAF
is called.

Constraints:

if IJAC 6¼ 0, LIWORK � MNP� 2� Nþ 1ð Þ þ N;

if IJAC ¼ 0, LIWORK � MNP� 2� Nþ 1ð Þ þ N2 þ 4� Nþ 2.

24: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Chapter P01).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the parameters N, MNP, NP, NUMBEG, NUMMIX, TOL, DELEPS, LWORK or
LIWORK has been incorrectly set, or Xð1Þ � XðNPÞ or the mesh points XðiÞ are not in strictly
ascending order.

IFAIL ¼ 2

A finer mesh is required for the accuracy requested; that is MNP is not large enough. This error
exit normally occurs when the problem being solved is difficult (for example, there is a boundary
layer) and high accuracy is requested. A poor initial choice of mesh points will make this error exit
more likely.

IFAIL ¼ 3

The Newton iteration has failed to converge. There are several possible causes for this error:

(i) faulty coding in one of the Jacobian calculation routines;

(ii) if IJAC ¼ 0 then inaccurate Jacobians may have been calculated numerically (this is a very
unlikely cause); or,

D02RAF NAG Fortran Library Manual

D02RAF.8 [NP3657/21]

(iii) a poor initial mesh or initial approximate solution has been selected either by you or by default
or there are not enough points in the initial mesh. Possibly, you should try the continuation
facility.

IFAIL ¼ 4

The Newton iteration has reached round-off error level. It could be however that the answer
returned is satisfactory. The error is likely to occur if too high an accuracy is requested.

IFAIL ¼ 5

The Jacobian calculated by JACOBG (or the equivalent matrix calculated by numerical
differentiation) is singular. This may occur due to faulty coding of JACOBG or, in some
circumstances, to a zero initial choice of approximate solution (such as is chosen when INIT ¼ 0).

IFAIL ¼ 6

There is no dependence on � when continuation is being used. This can be due to faulty coding of
JACEPS or JACGEP or, in some circumstances, to a zero initial choice of approximate solution
(such as is chosen when INIT ¼ 0).

IFAIL ¼ 7

DELEPS is required to be less than machine precision for continuation to proceed. It is likely that
either the problem (3) has no solution for some value near the current value of � (see the advisory
print out from D02RAF) or that the problem is so difficult that even with continuation it is unlikely
to be solved using this routine. If the latter cause is suspected then using more mesh points initially
may help.

IFAIL ¼ 8 (D02RAF)
IFAIL ¼ 9 (D02RAR)

A serious error has occurred in a call in the specified routine. Check all array subscripts and
(sub)program parameter lists in calls to D02RAF. Seek expert help.

7 Accuracy

The solution returned by the routine will be accurate to your tolerance as defined by the relation (5) except
in extreme circumstances. The final error estimate over the whole mesh for each component is given in the
array ABT. If too many points are specified in the initial mesh, the solution may be more accurate than
requested and the error may not be approximately equidistributed.

8 Further Comments

There are too many factors present to quantify the timing. The time taken by D02RAF is negligible only
on very simple problems.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also monitoring
information about the course of the computation.

In the case where you wish to solve a sequence of similar problems, the use of the final mesh and solution
from one case as the initial mesh is strongly recommended for the next.

9 Example

We solve the differential equation

y000 ¼ �yy00 � 2� 1� y0
2

� �
with � ¼ 1 and boundary conditions

y 0ð Þ ¼ y0 0ð Þ ¼ 0, y0 10ð Þ ¼ 1

D02 – Ordinary Differential Equations D02RAF

[NP3657/21] D02RAF.9

to an accuracy specified by TOL ¼ 1:0D� 4. The continuation facility is used with the continuation
parameter � introduced as in the differential equation above and with DELEPS ¼ 0:1 initially. (The
continuation facility is not needed for this problem and is used here for illustration.)

9.1 Program Text

* D02RAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, MNP, IY, LWORK, LIWORK
PARAMETER (N=3,MNP=40,IY=N,LWORK=MNP*(3*N*N+6*N+2)

+ +4*N*N+3*N,LIWORK=MNP*(2*N+1)+N)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
DOUBLE PRECISION DELEPS, TOL
INTEGER I, IFAIL, IJAC, INIT, J, NP, NUMBEG, NUMMIX

* .. Local Arrays ..
DOUBLE PRECISION ABT(N), WORK(LWORK), X(MNP), Y(IY,MNP)
INTEGER IWORK(LIWORK)

* .. External Subroutines ..
EXTERNAL D02RAF, FCN, G, JACEPS, JACGEP, JACOBF, JACOBG,

+ X04ABF
* .. Executable Statements ..

WRITE (NOUT,*) ’D02RAF Example Program Results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’Calculation using analytic Jacobians’
CALL X04ABF(1,NOUT)
TOL = 1.0D-4
NP = 17
NUMBEG = 2
NUMMIX = 0
X(1) = 0.0D0
X(NP) = 10.0D0
INIT = 0
DELEPS = 0.1D0
IJAC = 1

* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

*
CALL D02RAF(N,MNP,NP,NUMBEG,NUMMIX,TOL,INIT,X,Y,N,ABT,FCN,G,IJAC,

+ JACOBF,JACOBG,DELEPS,JACEPS,JACGEP,WORK,LWORK,IWORK,
+ LIWORK,IFAIL)

*
IF (IFAIL.EQ.0 .OR. IFAIL.EQ.4) THEN

IF (IFAIL.EQ.4) WRITE (NOUT,99996)
+ ’On exit from D02RAF IFAIL = ’, IFAIL

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Solution on final mesh of ’, NP, ’ points’
WRITE (NOUT,*)

+ ’ X(I) Y1(I) Y2(I) Y3(I)’
WRITE (NOUT,99998) (X(J),(Y(I,J),I=1,N),J=1,NP)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Maximum estimated error by components’
WRITE (NOUT,99997) (ABT(I),I=1,N)

ELSE
WRITE (NOUT,99996) ’On exit from D02RAF IFAIL = ’, IFAIL

END IF
STOP

*
99999 FORMAT (1X,A,I2,A)
99998 FORMAT (1X,F10.3,3F13.4)
99997 FORMAT (11X,1P,3E13.2)
99996 FORMAT (1X,A,I3)

END
*

SUBROUTINE FCN(X,EPS,Y,F,M)
* .. Scalar Arguments ..

DOUBLE PRECISION EPS, X

D02RAF NAG Fortran Library Manual

D02RAF.10 [NP3657/21]

INTEGER M
* .. Array Arguments ..

DOUBLE PRECISION F(M), Y(M)
* .. Executable Statements ..

F(1) = Y(2)
F(2) = Y(3)
F(3) = -Y(1)*Y(3) - 2.0D0*(1.0D0-Y(2)*Y(2))*EPS
RETURN
END

*
SUBROUTINE G(EPS,Y,Z,AL,M)

* .. Scalar Arguments ..
DOUBLE PRECISION EPS
INTEGER M

* .. Array Arguments ..
DOUBLE PRECISION AL(M), Y(M), Z(M)

* .. Executable Statements ..
AL(1) = Y(1)
AL(2) = Y(2)
AL(3) = Z(2) - 1.0D0
RETURN
END

*
SUBROUTINE JACEPS(X,EPS,Y,F,M)

* .. Scalar Arguments ..
DOUBLE PRECISION EPS, X
INTEGER M

* .. Array Arguments ..
DOUBLE PRECISION F(M), Y(M)

* .. Executable Statements ..
F(1) = 0.0D0
F(2) = 0.0D0
F(3) = -2.0D0*(1.0D0-Y(2)*Y(2))
RETURN
END

*
SUBROUTINE JACGEP(EPS,Y,Z,AL,M)

* .. Scalar Arguments ..
DOUBLE PRECISION EPS
INTEGER M

* .. Array Arguments ..
DOUBLE PRECISION AL(M), Y(M), Z(M)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
DO 20 I = 1, M

AL(I) = 0.0D0
20 CONTINUE

RETURN
END

*
SUBROUTINE JACOBF(X,EPS,Y,F,M)

* .. Scalar Arguments ..
DOUBLE PRECISION EPS, X
INTEGER M

* .. Array Arguments ..
DOUBLE PRECISION F(M,M), Y(M)

* .. Local Scalars ..
INTEGER I, J

* .. Executable Statements ..
DO 40 I = 1, M

DO 20 J = 1, M
F(I,J) = 0.0D0

20 CONTINUE
40 CONTINUE

F(1,2) = 1.0D0
F(2,3) = 1.0D0
F(3,1) = -Y(3)
F(3,2) = 4.0D0*Y(2)*EPS
F(3,3) = -Y(1)
RETURN

D02 – Ordinary Differential Equations D02RAF

[NP3657/21] D02RAF.11

END
*

SUBROUTINE JACOBG(EPS,Y,Z,A,B,M)
* .. Scalar Arguments ..

DOUBLE PRECISION EPS
INTEGER M

* .. Array Arguments ..
DOUBLE PRECISION A(M,M), B(M,M), Y(M), Z(M)

* .. Local Scalars ..
INTEGER I, J

* .. Executable Statements ..
DO 40 I = 1, M

DO 20 J = 1, M
A(I,J) = 0.0D0
B(I,J) = 0.0D0

20 CONTINUE
40 CONTINUE

A(1,1) = 1.0D0
A(2,2) = 1.0D0
B(3,2) = 1.0D0
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D02RAF Example Program Results

Calculation using analytic Jacobians

Solution on final mesh of 33 points
X(I) Y1(I) Y2(I) Y3(I)

0.000 0.0000 0.0000 1.6872
0.062 0.0032 0.1016 1.5626
0.125 0.0125 0.1954 1.4398
0.188 0.0275 0.2816 1.3203
0.250 0.0476 0.3605 1.2054
0.375 0.1015 0.4976 0.9924
0.500 0.1709 0.6097 0.8048
0.625 0.2530 0.6999 0.6438
0.703 0.3095 0.7467 0.5563
0.781 0.3695 0.7871 0.4784
0.938 0.4978 0.8513 0.3490
1.094 0.6346 0.8977 0.2502
1.250 0.7776 0.9308 0.1763
1.458 0.9748 0.9598 0.1077
1.667 1.1768 0.9773 0.0639
1.875 1.3815 0.9876 0.0367
2.031 1.5362 0.9922 0.0238
2.188 1.6915 0.9952 0.0151
2.500 2.0031 0.9983 0.0058
2.656 2.1591 0.9990 0.0035
2.812 2.3153 0.9994 0.0021
3.125 2.6277 0.9998 0.0007
3.750 3.2526 1.0000 0.0001
4.375 3.8776 1.0000 0.0000
5.000 4.5026 1.0000 0.0000
5.625 5.1276 1.0000 -0.0000
6.250 5.7526 1.0000 0.0000
6.875 6.3776 1.0000 -0.0000
7.500 7.0026 1.0000 0.0000
8.125 7.6276 1.0000 -0.0000
8.750 8.2526 1.0000 0.0000
9.375 8.8776 1.0000 -0.0000

10.000 9.5026 1.0000 0.0000

Maximum estimated error by components

D02RAF NAG Fortran Library Manual

D02RAF.12 [NP3657/21]

6.92E-05 1.81E-05 6.42E-05

D02 – Ordinary Differential Equations D02RAF

[NP3657/21] D02RAF.13 (last)

	D02RAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	MNP
	NP
	NUMBEG
	NUMMIX
	TOL
	INIT
	X
	Y
	IY
	ABT
	FCN
	X
	EPS
	Y
	F
	N

	G
	EPS
	YA
	YB
	BC
	N

	IJAC
	JACOBF
	X
	EPS
	Y
	F
	N

	JACOBG
	EPS
	YA
	YB
	AJ
	BJ
	N

	DELEPS
	JACEPS
	X
	EPS
	Y
	F
	N

	JACGEP
	EPS
	YA
	YB
	BCEP
	N

	WORK
	LWORK
	IWORK
	LIWORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL =8 ()
	IFAIL =9 ()

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

